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Universal challenges:
Evolve traditional approaches
Embrace data-driven discovery

Enable interdisciplinary work
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Data-driven space weather

What if space weather were an
exploration, data-driven science?
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~6.6 Earth radii
(20,230 km altitude)

Global Navigation Satellite
System (GNSS) signals for
Space Science
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Data-driven space weather U CPAESS

Two highlights

Data-driven space weather

Novel approach to space
1 weather discovery:
Network Analysis

/
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2 Machine learning for
space weather prediction
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Collection of ‘objects’
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Data-driven space weather
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Objects are connected by lines
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Data-driven space weather

Objects are
- called nodes
or vertices

Lines are
I called edges
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Social network

Data-driven space weather

Martin Dodge, University of Manchester
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In this analysis nodes
represent grid points
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Visualize the
connections




Network analysis WA CPAESS
Degree Centrality

Data-driven space weather

Northern hemisphere Southern hemisphere

48%......

Low space
weather
activity

High space
weather
activity

McGranaghan, R. M., A. J. Mannucci, O. Verkhoglyadova, and N. Malik (2017), Finding
multiscale connectivity in our geospace observational system: Network analysis of total
electron content, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA024202.
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Network analysis WA CPAESS
Degree Centrality

Data-driven space weather

How connected a grid point is to the rest
of the network

=>» Larger = greater influence on network
function

McGranaghan: Space weather, data
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Degree Centrality
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Data-driven space weather

Low space
weather
activity

High space
weather
activity

Northern hemlsphere Southern hemlsphere

Network analysis provides new insight for space weather

lllustrative of potential for data-driven approaches to impact space weather

71O
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Machine learning

Data-driven space weather
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Machine learning

Data-driven space weather

Problems well-suited to machine learning
m Classification
m Event detection
m Clustering
m Prediction

1/11/18 McGranaghan: Space weather, data
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Machine learning

Data-driven space weather

Problems well-suited to machine learning

> Prediction
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Data-driven space weather

530

Solar wind 520 -
speed 510 .

(km/s) 500 -

Given data at current time

Solar wind
magnetic field
Z.-component of- -

(nT)

Scintillation
Coral Harbor
station

[rad] 0.05 — N R

Scintillation
Gjoa Haven
station o1
[rad] 0.05 —

McGranaghan: Space weather, data

1/11/18 science, and JPL

49



Step 2:
Define the task

(/\CPAESS

Data-driven space weather

Solar wind
speed
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1/11/18
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Data-driven space weather

Solar wind
speed
(km/s)

Solar wind
magnetic field
Z.-component

(nT)

Scintillation
Coral Harbor
station
[rad]

Scintillation
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~—— M_Y

Input data -->

200k training samples

12k testing samples
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Machine learning algorithm for prediction

Support Vector Machine
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Cortes and Vapnik (1995)
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Data-driven space weather

Support Vector Machine
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/ Interplanetary
magnetic field

Cortes and Vapnik (1995)
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Data-driven space weather

Support Vector Machine
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p LalNNEN

s

Interplanetary
magnetic field

Cortes and Vapnik (1995)

1/11/18
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Data-driven space weather

Support Vector Machine

O O
O o

Electron
flux

f T
| AR
/ //Interplanetary

magnetic field

Cortes and Vapnik (1995)

McGranaghan: Space weather, data

1/11/18 science, and JPL

95
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Data-driven space weather

no scintillation T"U? Fa!s.e
negative positive

True label

o False True
scintillation negative  positive

no scintillation scintillation

Predicted label

McGranaghan et al., (2018) in prep.

McGranaghan: Space weather, data
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Machine learning algorithm for prediction

Data-driven space weather

no scintillation

True label

0.30

scintillation

no scintillation scintillation

Predicted label

McGranaghan et al., (2018) in prep.

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Data-driven space weather

0.9
0.8
0.7
0.6
0.5

no scintillation

True label
0.4

10.3
10.2
10.1

0.30

scintillation

no scintillation scintillation

96% edicted label

High accuracy predicting when
scintillation would not occur
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Machine learning algorithm for prediction

70%
Improved ability to predict when

scintillation will occur indicates
potential of approach

0.8
0.04 0.7
0.6
True label 0.5
0.4
10.3

10.2

scintillation 0.30

10.1

no scintillation scintillation

Predicted label

McGranaghan et al., (2018) in prep.
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0.9
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0.5
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Total Skill Score True label
P 0.4

10.3
10.2
10.1

0.30

-1 +1 scintillation
Worst Perfect

no scintillation scintillation

Predicted label

McGranaghan et al., (2018) in prep.
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Total Skill Score True label
P 0.4
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Worst Perfect
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McGranaghan et al., (2018) in prep.
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Machine learning algorithm for prediction

Data-driven space weather

Success of machine learning methods
requires:

1. Explicit and well-defined task

2. Alarge volume of high-quality data

m) Data wrangling a significant obstacle

McGranaghan: Space weather, data

1/11/18 science, and JPL
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What is space weather?
What if space weather were an
exploration, data-driven science?

What does this mean to the future of
JPL? (change how we work, cross-
cutting work, new exploration)
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VA CPAESS
HP & Sp Wx introduction =

Heliophysics & space weather

e Heliophysics is a vast and transdisciplinary subject that brings
together many threads of science

e Space weather importance to audience (make it clear that sp.
wx. affects all JPL interests)
s Enabling of new missions
¢ Protect astronauts
*» Protect space assets
m Enables use of space

s New data-driven approaches will lead to rapid discovery, new
capabilities, and improved understanding and ability to operate in
space as well as a reduction of barriers between interdisciplinary work

McGranaghan: Space weather, data 76
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Six degrees of separationanda .~ CPAESS
small world

New Frontier: Network analysis

I _.anaygnan: Space weather, data
science, and JPL
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1/11/18 McGranaghan: Space weather, data science, and JPL 78



Universal challenges:
Evolve traditional approaches
Embrace data-driven discovery

Enable interdisciplinary work

1/11/18 McGranaghan: Space weather, data science, and JPL
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Data-driven space weather

One TEC data ‘sample’

TEC data
Converted to magnetic coordinates
Accumulated over one hour

15

110

McGranaghan: Space weather, data
1/11/18 science, and JPL 80



Data-driven space weather

One TEC data ‘sample’

20

TEC data
Converted to magnetic coordinates
Accumulated over one hour

15

110

v

Background level removed to identify
TEC response to space weather
activity

McGranaghan: Space weather,
e science, and JPL sl




Data-driven space weather

Accumulate samples
over time

1/11/18 McGranaghan: Space weather,
science, and JPL




Data-driven space weather
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A\ CPAESS
What is network analysis? =

New Frontier: Network analysis

In this analysis nodes
represent grid points

®
PTEEA
::.:/‘:.:0 .0 eo® ®
0::’::::::::0. oV ’.. :::\:.0
§‘.::\:-.-:-.'-s-:-..-.-.f:.-}-::;::-'5 °
® e e%® 0% %0 e dls0es
. °

McGranaghan: Space weather, data

1/11/18 science, and JPL
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TEC Network analysis: U CPAESS
Steps

New Frontier: Network analysis

One TEC data ‘sample’

TEC data
Converted to magnetic coordinates
Accumulated over one hour

15

110

McGranaghan: Space weather, data

1/11/18 science, and JPL
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TEC Network analysis:

Steps

(/\CPAESS

New Frontier: Network analysis

TEC data
Converted to magnetic coordinates
Accumulated over one hour

v

Background level removed to identify
TEC response to geospace activity

1/11/18

McGranaghan: Space weather,

science, and JPL

One TEC data ‘sample’

20

15

110
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TEC Network analysis: U CPAESS
Steps

New Frontier: Network analysis

Each sample binned by
IMF clock angle

McGranaghan: Space weather, -5

1/11/18 science, and JPL
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TEC Network analysis: U CPAESS
Steps

New Frontier: Network analysis

Accumulate samples
over time

McGranaghan: Space weather,

1/11/18 science, and JPL
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TEC Network analysis: U CPAESS
Steps

New Frontier: Network analysis

Visualize the
connections

2 |
48°
2 |
48°
2 |
48°
18
2 |
48°
18
2 |
48°
18

18

18

McGranaghan: Space weathe

1/11/18 science, and JPL
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Network analysis WA CPAESS
Degree Centrality

New Frontier: Network analysis

Northern hemisphere Southern hemisphere

........ 48 48%....._

McGranaghan, R. M., A. J. Mannucci, O. Verkhoglyadova, and N. Malik (2017), Finding
multiscale connectivity in our geospace observational system: Network analysis of total
electron content, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA024202.

—— — 00O B O
McGranaghan: Space weather, data

1/11/18 science, and JPL
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Network analysis WA CPAESS
Degree Centrality

New Frontier: Network analysis

How connected a grid point is to the rest
of the network

=>» Larger = greater influence on network
function

McGranaghan: Space weather, data

1/11/18 science, and JPL



Network analysis
Degree Centrality

/\CPAESS

New Frontier: Network analysis

Northern hemlsphere Southern hemlsphere

hemispheres

Cusp and ionospheric projection of magnetosph'eric boundary layers different between

1 71O

science, and JPL



Network analysis U CPAESS

Degree Centrality

New Frontier: Network analysis

Northern hemlsphere

Southern hemlsphere

L4
Cusp and ionospheric projection of magnetospher
hemispheres
PLASMA INTERIOR LOW-LATITUDE PLASMA RING CURRENT -
| EANTLE CUSP (EL) BOERYD&RY | BOEX%SY PLASMA SHEET -
1o MAGNETOPAUSE BY]UNDARY LAYERS Vasyliunas, [1979]

science, and s




Network analysis WA CPAESS
Degree Centrality

New Frontier: Network analysis

Northern hemlsphere Southern hemlsphere

Dayside is more important to functioning of the network during local winter

1o science, and JPL 4



Network analysis U CPAESS
Median Connection Distance

New Frontier: Network analysis

Northern hemisphere Southern hemisphere

R

d 0
. L TT———
BZ 0 500 1000 1500 2000 2500 3000 3500

1578.614 . o

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Network analysis WA CPAESS
Median Connection Distance

New Frontier: Network analysis

Indicates scale sizes of connectivity

=>» Larger = longer range connections

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Network analysis U CPAESS
Median Connection Distance

New Frontier: Network analysis

Northern hemisphere Southern hemisphere

1235.708

0 500 1000 1500 2000 2500 3000 3500

1578.614 . oA

Hemispheric asymmetries clear

1hrrro science, and JPL /



Network analysis U CPAESS
Median Connection Distance

New Frontier: Network analysis

Northern hemisphere Southern hemisphere

R

d 0
. L TT———
BZ 0 500 1000 1500 2000 2500 3000 3500

1578.614 . o

Hemispheric asymmetries clear
Longer range connections in southern hemisphere

LAk science, and JPL 8



Network analysis U CPAESS
Median Connection Distance

New Frontier: Network analysis

Northern hemisphere Southern hemisphere

B o oo o e .
Z 0 500 1000 1500 2000 2500 3000 3500

1578.614 " P SR

| |
Hemispheric asymmetries clear
Longer range connections in southern hemisphere
IMF dependency greater in northern hemisphere
1 TT71TO 9

science, and JPL



A\ CPAESS
Network analysis =

New Frontier: Network analysis

Networks suggest GNSS signals contain information about Ml coupling

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Characteristic distribution of GPS ./~ CPAESS

ground-based receivers

Latitude [deg]

-150 -100 -50 0 50 100 150
Longitude [deg]

1/11/18

McGranaghan: Space weather, data
science, and JPL
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CPAESS
Network analysis: Steps =

20 Start with TEC data
(1°x1° geographic coordinates at 5-
minute cadence) converted to
15 magnetic coordinates
6| 110
15
—0
——— 909090900 z0zz0z0z0z0z0z0909m9m0m0m00m0000O4m4m4m—mn9uvuv0v0&090m0m0m4m&9m90u&4u909n0m0mm9m90uv;v;&mm9m v v v09m©9B0909m 0 090v0v0v0v09m0m© 9 ©
1/11/18 McGranaghan: Space weather, data

science, and JPL 102



CPAESS
Network analysis: Steps =

20
(b) 20
15
15
6110 *
18 6 110
15
15
—o
Step 1: Accumulate 0

TEC data over 1-hour
time span

McGranaghan: Space weather, data

1/11/18 science, and JPL
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CPAESS
Network analysis: Steps =

(b) 20
& 8
20
18 =10
15
15
10
—0

B L Step 2: Re-bin
[ s according to equal-

0 || { area binning scheme
]

o

McGranaghan: Space weather, data

1/11/18 science, and JPL
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A\ CPAESS
Network analysis: Steps =

Step 3: Compute
relative perturbations

20 (d) | 5

McGranaghan: Space weather, data
science, and JPL
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CPAESS
Network analysis: Steps =

Step 4: Assign distribution
| to appropriate IMF clock

McGranaghan: Space weather, data

1/11/18 science, and JPL
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/\CPAESS

Network analysis: Steps

Step 5: Calculate
correlation matrix from all

e === 1| distributions in each IMF
g et e .| clock angle bin
i
- o o 0.6
- o o W
- W W 04
-
;t / / .
1/11/18 McGranaghan: Space weather, data 107
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Network analysis: Steps

(/\CPAESS

Step 6: Calculate
adjacency matrix

0.8

0.6

0.4

0

—.

BB EEE:

tiiii

- o o o w W

- o W

o W A A

o W W AR

o W WA
— WA

1/11/18

McGranaghan: Space weather, data
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A\ CPAESS
Network analysis: Steps =

0 Step 7: Construct
and visualize the
network

ya ' 0—
McGranaghan: Space weather, data
. 109
science, and JPL
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How are we carrying out this analysis? 2~ CPAESS
Hemispheric specific, IMF-dependent TEC (Jan. 2016)

TEC Network Analysis

Looking from

+B; Sun to Earth

/e
N

AN

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Exciting possibilities: I\ CPAESS
Machine Learning

.@\, Canadian

now 100" W

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Given ionospheric, Can we predict

geomagnetic, and ilonospheric
solar information scintillation in
now... one hour?
t t+1 hour

== 45

l= Number of features in each data

" sample at t .

Classify

Canadian High Arctic lonospheric Network +/' Scintillation or not at t+1
(CHAIN) GNSS data (+) Scintillation > 0.1

Solar wind data and solar indices () No Scintillation < 0.1

G%omagnetic activity data

1/11/18 McGranaghan: Space weather, data science, and JPL 112



UT = 04:30 - 05:00

True
Negatives MLT 100 deg W = ~21.8
BZ:20nT
B :20nT
By:-20nT Yy
B_:-20nT
% ° IMF Angle andzMag:itude % -
4
& ;
- ¢P Y-
76 48 3 5
False
Negatives
S -
4
& ;
- 4P Y-

1/11/18 McGranaghan: Space weather, data science, and JPL
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Interagency, Intra-agency and B )
International efforts

* NASA-NSF (NASA-NSF MOU)
- Co-funding CCMC facility
- Co-funding Living With a Star Strategic Capabilities
- New opportunity focused on “Computational Aspects of Space Weather”
- Coordinating ICON & GOLD opportunities (NASA mission Gl, NSF CEDAR, joint opp.)

* NASA-NOAA (NASA-NOAA MOU)
- Collaboration between CCMC and NOAA/SWPC on space weather modeling capability

* NASA-NSF-NOAA
- Pilot O2R research activity
* Heliophysics-Planetary
- Co-funding selected Living With a Star grants
- Joint Juno Participating Scientist Program
* Heliophysics-Astrophysics
- Joint “Impact of Stellar Properties on the Habitability of Exoplanets” research

opportunity

* NASA-ESA Slide Credit: Peg Luce 2017
- Solar Orbiter
- THOR-US contingent on selection of ESA M5 mission

* NASA-KASI

- Development towards prototype coronagraph for balloon flight in 2019; agreement
signed October 2017

12
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Methane SourceFinder - Machine learning U CPAESS
for geospace imagery data

AVlRls Jan 12 time—series January 11, 2016 DOY:011 Orbit: 09156(DMSPF19)

!A

- North UT 19:28

1.0

SSUSI LBHS (kR)

South 00 UT 20:16

100

SSUSILBHS (kR)
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Methane SourceFinder - Machine learning U CPAESS
for geospace imagery data

AVlRls Jan 12 time—series January 11, 2016 DOY:011 Orbit: 09156(DMSPF19)

| Task: ID, track, and e "
understand Methane
plumes from flight data

1.0

SSUSI LBHS (kR)

South 00 UT 20:16

100

SSUSILBHS (kR)

0.1
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Methane SourceFinder - Machine learning U CPAESS
for geospace imagery data

AVlRls Jan 12 time—series January 11, 2016 DOY:011 Orbit: 09156(DMSPF19)

s North UT 19:28

1.0

T

SSUSI LBHS (kR)

0.1

UT 20:16

100

SSUSILBHS (kR)

Task: ID, track, and
understand interesting

features in imagery data
|

0.1

1/11/18 McGranaghan: Space weather, data
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Methane SourceFinder - SSUSI machine .~ CPAESS
learning for ionosphere

Telling funding point:

Methane SourceFinder project made possible from NASA's
Advancing Collaborative Connections for Earth System Science
(ACCESS)
ACCESS goal: enhance, extend, and improve existing
components of NASA’s distributed and heterogeneous data
and information systems infrastructure

 Enabled work at intersection of Earth Science and Data
Science

No true parallel program in Heliophysics

1/11/18 McGranagh_an: Space weather, data 191
science, and JPL



Data-driven space weather U CPAESS
What have we learned?

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Data-driven space weather U CPAESS
What have we learned?

Novel approach to space
1 weather discovery: 2
Network Analysis

Machine learning for
space weather prediction

McGranaghan: Space weather, data

1/11/18 science, and JPL
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Data-driven space weather U CPAESS
What have we learned?

Novel approach to space
1 weather discovery: 2
Network Analysis

Machine learning for
space weather prediction

McGranaghan: Space weather, data

1/11/18 science, and JPL
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CPAESS
What have we learned? =

GNSS signals are capable of being the backbone of the
space weather observational system

m Coverage and cadence

m Critical ionospheric information

m Large volumes of data

McGranaghan: Space weather, data

1/11/18 science, and JPL
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CPAESS
What have we learned? =

GNSS signals are capable of being the backbone of the
space weather observational system

m Coverage and cadence

m Critical ionospheric information

m Large volumes of data

Success of ML methods requires:
1. A large volume of high-quality data
2. Explicit and well-defined task

McGranaghan: Space weather, data

1/11/18 science, and JPL
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CPAESS
What have we learned? =

GNSS signals are capable of being the backbone of the
space weather observational system

m Coverage and cadence

m Critical ionospheric information

m Large volumes of data

Success of ML methods requires:
1. A large volume of high-quality data
2. Explicit and well-defined task

m) Data wrangling a significant obstacle

McGranaghan: Space weather, data

1/11/18 science, and JPL
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